3.2.57 \(\int \frac {(a+b \tanh ^{-1}(c x))^2}{x (d+e x)} \, dx\) [157]

Optimal. Leaf size=319 \[ \frac {2 \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{d}+\frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2}{1+c x}\right )}{d}-\frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d}-\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (2,1-\frac {2}{1-c x}\right )}{d}+\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (2,-1+\frac {2}{1-c x}\right )}{d}-\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (2,1-\frac {2}{1+c x}\right )}{d}+\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {PolyLog}\left (2,1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d}+\frac {b^2 \text {PolyLog}\left (3,1-\frac {2}{1-c x}\right )}{2 d}-\frac {b^2 \text {PolyLog}\left (3,-1+\frac {2}{1-c x}\right )}{2 d}-\frac {b^2 \text {PolyLog}\left (3,1-\frac {2}{1+c x}\right )}{2 d}+\frac {b^2 \text {PolyLog}\left (3,1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{2 d} \]

[Out]

-2*(a+b*arctanh(c*x))^2*arctanh(-1+2/(-c*x+1))/d+(a+b*arctanh(c*x))^2*ln(2/(c*x+1))/d-(a+b*arctanh(c*x))^2*ln(
2*c*(e*x+d)/(c*d+e)/(c*x+1))/d-b*(a+b*arctanh(c*x))*polylog(2,1-2/(-c*x+1))/d+b*(a+b*arctanh(c*x))*polylog(2,-
1+2/(-c*x+1))/d-b*(a+b*arctanh(c*x))*polylog(2,1-2/(c*x+1))/d+b*(a+b*arctanh(c*x))*polylog(2,1-2*c*(e*x+d)/(c*
d+e)/(c*x+1))/d+1/2*b^2*polylog(3,1-2/(-c*x+1))/d-1/2*b^2*polylog(3,-1+2/(-c*x+1))/d-1/2*b^2*polylog(3,1-2/(c*
x+1))/d+1/2*b^2*polylog(3,1-2*c*(e*x+d)/(c*d+e)/(c*x+1))/d

________________________________________________________________________________________

Rubi [A]
time = 0.32, antiderivative size = 319, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6087, 6033, 6199, 6095, 6205, 6745, 6059} \begin {gather*} \frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2 c (d+e x)}{(c d+e) (c x+1)}\right )}{d}-\frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2 c (d+e x)}{(c x+1) (c d+e)}\right )}{d}-\frac {b \text {Li}_2\left (1-\frac {2}{1-c x}\right ) \left (a+b \tanh ^{-1}(c x)\right )}{d}+\frac {b \text {Li}_2\left (\frac {2}{1-c x}-1\right ) \left (a+b \tanh ^{-1}(c x)\right )}{d}-\frac {b \text {Li}_2\left (1-\frac {2}{c x+1}\right ) \left (a+b \tanh ^{-1}(c x)\right )}{d}+\frac {2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right ) \left (a+b \tanh ^{-1}(c x)\right )^2}{d}+\frac {\log \left (\frac {2}{c x+1}\right ) \left (a+b \tanh ^{-1}(c x)\right )^2}{d}+\frac {b^2 \text {Li}_3\left (1-\frac {2 c (d+e x)}{(c d+e) (c x+1)}\right )}{2 d}+\frac {b^2 \text {Li}_3\left (1-\frac {2}{1-c x}\right )}{2 d}-\frac {b^2 \text {Li}_3\left (\frac {2}{1-c x}-1\right )}{2 d}-\frac {b^2 \text {Li}_3\left (1-\frac {2}{c x+1}\right )}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTanh[c*x])^2/(x*(d + e*x)),x]

[Out]

(2*(a + b*ArcTanh[c*x])^2*ArcTanh[1 - 2/(1 - c*x)])/d + ((a + b*ArcTanh[c*x])^2*Log[2/(1 + c*x)])/d - ((a + b*
ArcTanh[c*x])^2*Log[(2*c*(d + e*x))/((c*d + e)*(1 + c*x))])/d - (b*(a + b*ArcTanh[c*x])*PolyLog[2, 1 - 2/(1 -
c*x)])/d + (b*(a + b*ArcTanh[c*x])*PolyLog[2, -1 + 2/(1 - c*x)])/d - (b*(a + b*ArcTanh[c*x])*PolyLog[2, 1 - 2/
(1 + c*x)])/d + (b*(a + b*ArcTanh[c*x])*PolyLog[2, 1 - (2*c*(d + e*x))/((c*d + e)*(1 + c*x))])/d + (b^2*PolyLo
g[3, 1 - 2/(1 - c*x)])/(2*d) - (b^2*PolyLog[3, -1 + 2/(1 - c*x)])/(2*d) - (b^2*PolyLog[3, 1 - 2/(1 + c*x)])/(2
*d) + (b^2*PolyLog[3, 1 - (2*c*(d + e*x))/((c*d + e)*(1 + c*x))])/(2*d)

Rule 6033

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)/(x_), x_Symbol] :> Simp[2*(a + b*ArcTanh[c*x])^p*ArcTanh[1 - 2/(1
 - c*x)], x] - Dist[2*b*c*p, Int[(a + b*ArcTanh[c*x])^(p - 1)*(ArcTanh[1 - 2/(1 - c*x)]/(1 - c^2*x^2)), x], x]
 /; FreeQ[{a, b, c}, x] && IGtQ[p, 1]

Rule 6059

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^2/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x])^2)*(Lo
g[2/(1 + c*x)]/e), x] + (Simp[(a + b*ArcTanh[c*x])^2*(Log[2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp
[b*(a + b*ArcTanh[c*x])*(PolyLog[2, 1 - 2/(1 + c*x)]/e), x] - Simp[b*(a + b*ArcTanh[c*x])*(PolyLog[2, 1 - 2*c*
((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp[b^2*(PolyLog[3, 1 - 2/(1 + c*x)]/(2*e)), x] - Simp[b^2*(PolyL
og[3, 1 - 2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/(2*e)), x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2
, 0]

Rule 6087

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Int[E
xpandIntegrand[(a + b*ArcTanh[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[
p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m])

Rule 6095

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p
 + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 6199

Int[(ArcTanh[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/2, Int[
Log[1 + u]*((a + b*ArcTanh[c*x])^p/(d + e*x^2)), x], x] - Dist[1/2, Int[Log[1 - u]*((a + b*ArcTanh[c*x])^p/(d
+ e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x
))^2, 0]

Rule 6205

Int[(Log[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(a + b*ArcT
anh[c*x])^p)*(PolyLog[2, 1 - u]/(2*c*d)), x] + Dist[b*(p/2), Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLog[2, 1 -
u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1
- 2/(1 - c*x))^2, 0]

Rule 6745

Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, x]}, Simp[w*PolyLog[n + 1, v], x] /
;  !FalseQ[w]] /; FreeQ[n, x]

Rubi steps

\begin {align*} \int \frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{x (d+e x)} \, dx &=\int \left (\frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{d x}-\frac {e \left (a+b \tanh ^{-1}(c x)\right )^2}{d (d+e x)}\right ) \, dx\\ &=\frac {\int \frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{x} \, dx}{d}-\frac {e \int \frac {\left (a+b \tanh ^{-1}(c x)\right )^2}{d+e x} \, dx}{d}\\ &=\frac {2 \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{d}+\frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2}{1+c x}\right )}{d}-\frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d}-\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1+c x}\right )}{d}+\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d}-\frac {b^2 \text {Li}_3\left (1-\frac {2}{1+c x}\right )}{2 d}+\frac {b^2 \text {Li}_3\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{2 d}-\frac {(4 b c) \int \frac {\left (a+b \tanh ^{-1}(c x)\right ) \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx}{d}\\ &=\frac {2 \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{d}+\frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2}{1+c x}\right )}{d}-\frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d}-\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1+c x}\right )}{d}+\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d}-\frac {b^2 \text {Li}_3\left (1-\frac {2}{1+c x}\right )}{2 d}+\frac {b^2 \text {Li}_3\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{2 d}+\frac {(2 b c) \int \frac {\left (a+b \tanh ^{-1}(c x)\right ) \log \left (\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx}{d}-\frac {(2 b c) \int \frac {\left (a+b \tanh ^{-1}(c x)\right ) \log \left (2-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx}{d}\\ &=\frac {2 \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{d}+\frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2}{1+c x}\right )}{d}-\frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d}-\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1-c x}\right )}{d}+\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (-1+\frac {2}{1-c x}\right )}{d}-\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1+c x}\right )}{d}+\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d}-\frac {b^2 \text {Li}_3\left (1-\frac {2}{1+c x}\right )}{2 d}+\frac {b^2 \text {Li}_3\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{2 d}+\frac {\left (b^2 c\right ) \int \frac {\text {Li}_2\left (1-\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx}{d}-\frac {\left (b^2 c\right ) \int \frac {\text {Li}_2\left (-1+\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx}{d}\\ &=\frac {2 \left (a+b \tanh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (1-\frac {2}{1-c x}\right )}{d}+\frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2}{1+c x}\right )}{d}-\frac {\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d}-\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1-c x}\right )}{d}+\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (-1+\frac {2}{1-c x}\right )}{d}-\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2}{1+c x}\right )}{d}+\frac {b \left (a+b \tanh ^{-1}(c x)\right ) \text {Li}_2\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{d}+\frac {b^2 \text {Li}_3\left (1-\frac {2}{1-c x}\right )}{2 d}-\frac {b^2 \text {Li}_3\left (-1+\frac {2}{1-c x}\right )}{2 d}-\frac {b^2 \text {Li}_3\left (1-\frac {2}{1+c x}\right )}{2 d}+\frac {b^2 \text {Li}_3\left (1-\frac {2 c (d+e x)}{(c d+e) (1+c x)}\right )}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 8.02, size = 1034, normalized size = 3.24 \begin {gather*} \frac {a^2 \log (x)}{d}-\frac {a^2 \log (d+e x)}{d}+\frac {a b \left (-i c d \pi \tanh ^{-1}(c x)-2 c d \tanh ^{-1}\left (\frac {c d}{e}\right ) \tanh ^{-1}(c x)+c d \tanh ^{-1}(c x)^2-e \tanh ^{-1}(c x)^2+\sqrt {1-\frac {c^2 d^2}{e^2}} e e^{-\tanh ^{-1}\left (\frac {c d}{e}\right )} \tanh ^{-1}(c x)^2+2 c d \tanh ^{-1}(c x) \log \left (1-e^{-2 \tanh ^{-1}(c x)}\right )+i c d \pi \log \left (1+e^{2 \tanh ^{-1}(c x)}\right )-2 c d \tanh ^{-1}\left (\frac {c d}{e}\right ) \log \left (1-e^{-2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )-2 c d \tanh ^{-1}(c x) \log \left (1-e^{-2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )+\frac {1}{2} i c d \pi \log \left (1-c^2 x^2\right )+2 c d \tanh ^{-1}\left (\frac {c d}{e}\right ) \log \left (i \sinh \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )\right )-c d \text {PolyLog}\left (2,e^{-2 \tanh ^{-1}(c x)}\right )+c d \text {PolyLog}\left (2,e^{-2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )\right )}{c d^2}+\frac {b^2 \left (i c d \pi ^3-8 c d \tanh ^{-1}(c x)^3-8 e \tanh ^{-1}(c x)^3+24 c d \tanh ^{-1}(c x)^2 \log \left (1-e^{2 \tanh ^{-1}(c x)}\right )+24 c d \tanh ^{-1}(c x) \text {PolyLog}\left (2,e^{2 \tanh ^{-1}(c x)}\right )-12 c d \text {PolyLog}\left (3,e^{2 \tanh ^{-1}(c x)}\right )-\frac {24 (c d-e) (c d+e) \left (-6 c d \tanh ^{-1}(c x)^3+2 e \tanh ^{-1}(c x)^3-4 \sqrt {1-\frac {c^2 d^2}{e^2}} e e^{-\tanh ^{-1}\left (\frac {c d}{e}\right )} \tanh ^{-1}(c x)^3-6 i c d \pi \tanh ^{-1}(c x) \log \left (\frac {1}{2} \left (e^{-\tanh ^{-1}(c x)}+e^{\tanh ^{-1}(c x)}\right )\right )-6 c d \tanh ^{-1}(c x)^2 \log \left (1+\frac {(c d+e) e^{2 \tanh ^{-1}(c x)}}{c d-e}\right )+6 c d \tanh ^{-1}(c x)^2 \log \left (1-e^{\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)}\right )+6 c d \tanh ^{-1}(c x)^2 \log \left (1+e^{\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)}\right )+6 c d \tanh ^{-1}(c x)^2 \log \left (1-e^{2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )+12 c d \tanh ^{-1}\left (\frac {c d}{e}\right ) \tanh ^{-1}(c x) \log \left (\frac {1}{2} i e^{-\tanh ^{-1}\left (\frac {c d}{e}\right )-\tanh ^{-1}(c x)} \left (-1+e^{2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )\right )+6 c d \tanh ^{-1}(c x)^2 \log \left (\frac {1}{2} e^{-\tanh ^{-1}(c x)} \left (e \left (-1+e^{2 \tanh ^{-1}(c x)}\right )+c d \left (1+e^{2 \tanh ^{-1}(c x)}\right )\right )\right )-6 c d \tanh ^{-1}(c x)^2 \log \left (\frac {c (d+e x)}{\sqrt {1-c^2 x^2}}\right )-3 i c d \pi \tanh ^{-1}(c x) \log \left (1-c^2 x^2\right )-12 c d \tanh ^{-1}\left (\frac {c d}{e}\right ) \tanh ^{-1}(c x) \log \left (i \sinh \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )\right )-6 c d \tanh ^{-1}(c x) \text {PolyLog}\left (2,-\frac {(c d+e) e^{2 \tanh ^{-1}(c x)}}{c d-e}\right )+12 c d \tanh ^{-1}(c x) \text {PolyLog}\left (2,-e^{\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)}\right )+12 c d \tanh ^{-1}(c x) \text {PolyLog}\left (2,e^{\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)}\right )+6 c d \tanh ^{-1}(c x) \text {PolyLog}\left (2,e^{2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )+3 c d \text {PolyLog}\left (3,-\frac {(c d+e) e^{2 \tanh ^{-1}(c x)}}{c d-e}\right )-12 c d \text {PolyLog}\left (3,-e^{\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)}\right )-12 c d \text {PolyLog}\left (3,e^{\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)}\right )-3 c d \text {PolyLog}\left (3,e^{2 \left (\tanh ^{-1}\left (\frac {c d}{e}\right )+\tanh ^{-1}(c x)\right )}\right )\right )}{6 c^2 d^2-6 e^2}\right )}{24 c d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTanh[c*x])^2/(x*(d + e*x)),x]

[Out]

(a^2*Log[x])/d - (a^2*Log[d + e*x])/d + (a*b*((-I)*c*d*Pi*ArcTanh[c*x] - 2*c*d*ArcTanh[(c*d)/e]*ArcTanh[c*x] +
 c*d*ArcTanh[c*x]^2 - e*ArcTanh[c*x]^2 + (Sqrt[1 - (c^2*d^2)/e^2]*e*ArcTanh[c*x]^2)/E^ArcTanh[(c*d)/e] + 2*c*d
*ArcTanh[c*x]*Log[1 - E^(-2*ArcTanh[c*x])] + I*c*d*Pi*Log[1 + E^(2*ArcTanh[c*x])] - 2*c*d*ArcTanh[(c*d)/e]*Log
[1 - E^(-2*(ArcTanh[(c*d)/e] + ArcTanh[c*x]))] - 2*c*d*ArcTanh[c*x]*Log[1 - E^(-2*(ArcTanh[(c*d)/e] + ArcTanh[
c*x]))] + (I/2)*c*d*Pi*Log[1 - c^2*x^2] + 2*c*d*ArcTanh[(c*d)/e]*Log[I*Sinh[ArcTanh[(c*d)/e] + ArcTanh[c*x]]]
- c*d*PolyLog[2, E^(-2*ArcTanh[c*x])] + c*d*PolyLog[2, E^(-2*(ArcTanh[(c*d)/e] + ArcTanh[c*x]))]))/(c*d^2) + (
b^2*(I*c*d*Pi^3 - 8*c*d*ArcTanh[c*x]^3 - 8*e*ArcTanh[c*x]^3 + 24*c*d*ArcTanh[c*x]^2*Log[1 - E^(2*ArcTanh[c*x])
] + 24*c*d*ArcTanh[c*x]*PolyLog[2, E^(2*ArcTanh[c*x])] - 12*c*d*PolyLog[3, E^(2*ArcTanh[c*x])] - (24*(c*d - e)
*(c*d + e)*(-6*c*d*ArcTanh[c*x]^3 + 2*e*ArcTanh[c*x]^3 - (4*Sqrt[1 - (c^2*d^2)/e^2]*e*ArcTanh[c*x]^3)/E^ArcTan
h[(c*d)/e] - (6*I)*c*d*Pi*ArcTanh[c*x]*Log[(E^(-ArcTanh[c*x]) + E^ArcTanh[c*x])/2] - 6*c*d*ArcTanh[c*x]^2*Log[
1 + ((c*d + e)*E^(2*ArcTanh[c*x]))/(c*d - e)] + 6*c*d*ArcTanh[c*x]^2*Log[1 - E^(ArcTanh[(c*d)/e] + ArcTanh[c*x
])] + 6*c*d*ArcTanh[c*x]^2*Log[1 + E^(ArcTanh[(c*d)/e] + ArcTanh[c*x])] + 6*c*d*ArcTanh[c*x]^2*Log[1 - E^(2*(A
rcTanh[(c*d)/e] + ArcTanh[c*x]))] + 12*c*d*ArcTanh[(c*d)/e]*ArcTanh[c*x]*Log[(I/2)*E^(-ArcTanh[(c*d)/e] - ArcT
anh[c*x])*(-1 + E^(2*(ArcTanh[(c*d)/e] + ArcTanh[c*x])))] + 6*c*d*ArcTanh[c*x]^2*Log[(e*(-1 + E^(2*ArcTanh[c*x
])) + c*d*(1 + E^(2*ArcTanh[c*x])))/(2*E^ArcTanh[c*x])] - 6*c*d*ArcTanh[c*x]^2*Log[(c*(d + e*x))/Sqrt[1 - c^2*
x^2]] - (3*I)*c*d*Pi*ArcTanh[c*x]*Log[1 - c^2*x^2] - 12*c*d*ArcTanh[(c*d)/e]*ArcTanh[c*x]*Log[I*Sinh[ArcTanh[(
c*d)/e] + ArcTanh[c*x]]] - 6*c*d*ArcTanh[c*x]*PolyLog[2, -(((c*d + e)*E^(2*ArcTanh[c*x]))/(c*d - e))] + 12*c*d
*ArcTanh[c*x]*PolyLog[2, -E^(ArcTanh[(c*d)/e] + ArcTanh[c*x])] + 12*c*d*ArcTanh[c*x]*PolyLog[2, E^(ArcTanh[(c*
d)/e] + ArcTanh[c*x])] + 6*c*d*ArcTanh[c*x]*PolyLog[2, E^(2*(ArcTanh[(c*d)/e] + ArcTanh[c*x]))] + 3*c*d*PolyLo
g[3, -(((c*d + e)*E^(2*ArcTanh[c*x]))/(c*d - e))] - 12*c*d*PolyLog[3, -E^(ArcTanh[(c*d)/e] + ArcTanh[c*x])] -
12*c*d*PolyLog[3, E^(ArcTanh[(c*d)/e] + ArcTanh[c*x])] - 3*c*d*PolyLog[3, E^(2*(ArcTanh[(c*d)/e] + ArcTanh[c*x
]))]))/(6*c^2*d^2 - 6*e^2)))/(24*c*d^2)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 20.32, size = 1799, normalized size = 5.64

method result size
derivativedivides \(\text {Expression too large to display}\) \(1799\)
default \(\text {Expression too large to display}\) \(1799\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctanh(c*x))^2/x/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

-a^2/d*ln(c*e*x+c*d)-b^2/d*e/(c*d+e)*arctanh(c*x)^2*ln(1-(c*d+e)*(c*x+1)^2/(-c^2*x^2+1)/(-c*d+e))-b^2*c/(c*d+e
)*arctanh(c*x)^2*ln(1-(c*d+e)*(c*x+1)^2/(-c^2*x^2+1)/(-c*d+e))-b^2*c/(c*d+e)*arctanh(c*x)*polylog(2,(c*d+e)*(c
*x+1)^2/(-c^2*x^2+1)/(-c*d+e))+1/2*b^2*c/(c*d+e)*polylog(3,(c*d+e)*(c*x+1)^2/(-c^2*x^2+1)/(-c*d+e))+1/2*I*b^2/
d*Pi*arctanh(c*x)^2*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-
c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))-b^2/d*e/(c*d+e)*arctanh(c*x)*polylog(2,(c*d+e)*(c*x+1)^2/(-c^2*x^2+1
)/(-c*d+e))+1/2*I*b^2/d*Pi*arctanh(c*x)^2*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^3-1/2*
I*b^2/d*Pi*arctanh(c*x)^2*csgn(I*(d*c*(1+(c*x+1)^2/(-c^2*x^2+1))+e*((c*x+1)^2/(-c^2*x^2+1)-1))/(1+(c*x+1)^2/(-
c^2*x^2+1)))^3-1/2*I*b^2/d*Pi*arctanh(c*x)^2*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*(d*c*(1+(c*x+1)^2/(-c^2
*x^2+1))+e*((c*x+1)^2/(-c^2*x^2+1)-1)))*csgn(I*(d*c*(1+(c*x+1)^2/(-c^2*x^2+1))+e*((c*x+1)^2/(-c^2*x^2+1)-1))/(
1+(c*x+1)^2/(-c^2*x^2+1)))+1/2*I*b^2/d*Pi*arctanh(c*x)^2*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*(d*c*(1+(c*
x+1)^2/(-c^2*x^2+1))+e*((c*x+1)^2/(-c^2*x^2+1)-1))/(1+(c*x+1)^2/(-c^2*x^2+1)))^2-1/2*I*b^2/d*Pi*arctanh(c*x)^2
*csgn(I/(1+(c*x+1)^2/(-c^2*x^2+1)))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^2+1)))^2-1/2*I*b^2/
d*Pi*arctanh(c*x)^2*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/(1+(c*x+1)^2/(-c^2*x^
2+1)))^2+1/2*I*b^2/d*Pi*arctanh(c*x)^2*csgn(I*(d*c*(1+(c*x+1)^2/(-c^2*x^2+1))+e*((c*x+1)^2/(-c^2*x^2+1)-1)))*c
sgn(I*(d*c*(1+(c*x+1)^2/(-c^2*x^2+1))+e*((c*x+1)^2/(-c^2*x^2+1)-1))/(1+(c*x+1)^2/(-c^2*x^2+1)))^2+a^2/d*ln(c*x
)-2*b^2/d*polylog(3,(c*x+1)/(-c^2*x^2+1)^(1/2))-2*b^2/d*polylog(3,-(c*x+1)/(-c^2*x^2+1)^(1/2))-a*b/d*ln(c*x)*l
n(c*x+1)+a*b/d*dilog((c*e*x+e)/(-c*d+e))-a*b/d*dilog((c*e*x-e)/(-c*d-e))-a*b/d*dilog(c*x+1)-a*b/d*dilog(c*x)+b
^2*arctanh(c*x)^2/d*ln(c*x)-b^2*arctanh(c*x)^2/d*ln(c*e*x+c*d)+b^2*arctanh(c*x)^2/d*ln(d*c*(1+(c*x+1)^2/(-c^2*
x^2+1))+e*((c*x+1)^2/(-c^2*x^2+1)-1))-b^2*arctanh(c*x)^2/d*ln((c*x+1)^2/(-c^2*x^2+1)-1)+b^2/d*arctanh(c*x)^2*l
n(1-(c*x+1)/(-c^2*x^2+1)^(1/2))+2*b^2/d*arctanh(c*x)*polylog(2,(c*x+1)/(-c^2*x^2+1)^(1/2))+b^2/d*arctanh(c*x)^
2*ln(1+(c*x+1)/(-c^2*x^2+1)^(1/2))+2*b^2/d*arctanh(c*x)*polylog(2,-(c*x+1)/(-c^2*x^2+1)^(1/2))+1/2*b^2/d*e/(c*
d+e)*polylog(3,(c*d+e)*(c*x+1)^2/(-c^2*x^2+1)/(-c*d+e))+2*a*b*arctanh(c*x)/d*ln(c*x)-2*a*b*arctanh(c*x)/d*ln(c
*e*x+c*d)+a*b/d*ln(c*e*x+c*d)*ln((c*e*x+e)/(-c*d+e))-a*b/d*ln(c*e*x+c*d)*ln((c*e*x-e)/(-c*d-e))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))^2/x/(e*x+d),x, algorithm="maxima")

[Out]

-a^2*(log(x*e + d)/d - log(x)/d) + integrate(1/4*b^2*(log(c*x + 1) - log(-c*x + 1))^2/(x^2*e + d*x) + a*b*(log
(c*x + 1) - log(-c*x + 1))/(x^2*e + d*x), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))^2/x/(e*x+d),x, algorithm="fricas")

[Out]

integral((b^2*arctanh(c*x)^2 + 2*a*b*arctanh(c*x) + a^2)/(x^2*e + d*x), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \operatorname {atanh}{\left (c x \right )}\right )^{2}}{x \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atanh(c*x))**2/x/(e*x+d),x)

[Out]

Integral((a + b*atanh(c*x))**2/(x*(d + e*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))^2/x/(e*x+d),x, algorithm="giac")

[Out]

integrate((b*arctanh(c*x) + a)^2/((e*x + d)*x), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {atanh}\left (c\,x\right )\right )}^2}{x\,\left (d+e\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*atanh(c*x))^2/(x*(d + e*x)),x)

[Out]

int((a + b*atanh(c*x))^2/(x*(d + e*x)), x)

________________________________________________________________________________________